Teorima Sisa dan Teorima Faktor

Kembali bersama rumus matematika, jangan bosan-bosan ya… semakin sering kita membaca ilmu maka akan semakin bertambah ilmu kita. Materi kali ini mengenai polinomial atau sering disebut dengan suku banyak. Mengenai apa itu suku banyak dan bagaiman bentuknya, mari kita simak pada penjelasan dibawah ini.
Bentuk Umum
an xn + an – 1 xn – 1 + an – 2 xn – 2 + … + … a2x2 + a1x + a0
keterangan :
n = derajat suku banyak
a0 = konstanta
an, an – 1, an – 2, … = koefisien dari xn, xn – 1, xn – 2, …
Pangkat merupakan bilangan cacah.
Pembagian Suku Banyak
Bentuk Umum
F(x) = P(x).H(x) + S(x)
dimana :
F(x) = suku banyak
P(x) = pembagi
H(x) = hasil bagi
S(x) = sisa

Teorema Sisa
Jika suatu suku banyak F(x) dibagi oleh (x – k) maka sisanya adalah F(k)
Jika pembagi berderajat n maka sisanya berderajat n – 1
Jika suku banyak berderajat m dan pembagi berderajat n, maka hasil baginya berderajat m – n

Metode Pembagian Suku Banyak
contoh :
F(x) = 2x3 – 3x2 + x + 5 dibagi dengan P(x) = 2x2 – x – 1
1. Pembagian Biasa
Sehingga hasil baginya: H(X) = x – 1, sisanya S(x) = x + 4
2. Cara Horner/skema
cara ini dapat  digunakan untuk pembagi berderajat 1 atau pembagi yang dapat difaktorkan menjadi pembagi-pembagi berderajat 1
Cara:
  • Tulis koefisiennya saja → harus runtut dari koefisien xn, xn – 1, … hingga konstanta (jika ada variabel yang tidak ada, maka koefisiennya ditulis 0)
Contoh: untuk 4x3 – 1, koefisien-koefisiennya adalah 4, 0, 0, dan -1 (untuk x3, x2, x, dan konstanta)
  • Jika koefisien derajat tertinggi P(x) ≠ 1, maka hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)
  • Jika pembagi dapat difaktorkan, maka:
Jika pembagi dapat difaktorkan menjadi P1 dan P2, maka S(x) = P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, maka S(x) = P1.P2.S3 + P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka S(x) = P1.P2.P3.S4 + P1.P2.S3 + P1.S2 + S1
dan seterusnya
Untuk soal di atas,
P(x) = 2x2 – x – 1 = (2x + 1)(x – 1)
P1: 2x + 1 = 0 → x = –½
P2: x – 1 = 0 → x = 1
Cara Hornernya:
H(x) = 1.x – 1 = x – 1
S(x) = P1.S2 + S1 = (2x + 1).1/2 + 7/2 = x + ½ + 7/2 = x + 4
3. Koefisien Tak Tentu
F(x) = P(x).H(x) + S(x)
Untuk soal di atas, karena F(x) berderajat 3 dan P(x) berderajat 2, maka
H(x) berderajat 3 – 2 = 1
S(x) berderajat 2 – 1 = 1
Jadi, misalkan H(x) = ax + b dan S(x) = cx + d
Maka:
2x3 – 3x2 + x + 5 = (2x2 – x – 1).(ax + b) + (cx + d)
Ruas kanan:
= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d
= 2ax3 + (2b – a)x2 + (–b – a + c)x + (–b + d)
Samakan koefisien ruas kiri dan ruas kanan:
x3 → 2 = 2a → a = 2/2 = 1
x2 → –3 = 2b – a → 2b = –3 + a = –3 + 1 = –2 → b = –2/2 = –1
x → 1 = –b – a + c → c = 1 + b + a = 1 – 1 + 1 → c = 1
Konstanta → 5 = –b + d → d = 5 + b = 5 – 1 → d = 4
Jadi:
H(x) = ax + b = 1.x – 1 = x – 1
S(x) = cx + d = 1.x + 4 = x + 4

Teorema Faktor
Suatu suku banyak F(x) mempunyai faktor (x – k) jika F(k) = 0 (sisanya jika dibagi dengan (x – k) adalah 0)
Catatan: jika (x – k) adalah faktor dari F(x) maka k dikatakan sebagai akar dari F(x)

Tips
  1. Untuk mencari akar suatu suku banyak dengan cara Horner, dapat dilakukan dengan mencoba-coba dengan angka dari faktor-faktor konstanta dibagi faktor-faktor koefisien pangkat tertinggi yang akan memberikan sisa = 0. Contohnya :untuk x3 – 2x2 – x + 2 = 0, faktor-faktor konstantanya: ±1, ±2, faktor-faktor koefisien pangkat tertinggi: ±1. Sehingga, angka-angka yang perlu dicoba: ±1 dan ±2untuk 4x3 – 2x2 – x + 2 = 0, faktor-faktor konstantanya: ±1, ±2, faktor-faktor koefisien pangkat tertinggi: ±1, ±2, ±4. Sehingga, angka-angka yang perlu dicoba: ±1, ±2, ±1/2, ±1/4
  2. Jika jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya adalah x = 1.
  3. Jika jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya adalah x = –1
Perhatikan contoh berikut :
Tentukan penyelesaian dari x3 – 2x2 – x + 2 = 0?
Jawab :
Faktor-faktor dari konstantanya, yaitu 2,  adalah ±1 dan ±2 dan faktor-faktor koefisien pangkat tertingginya, yaitu 1, adalah ±1, sehingga angka-angka yang perlu dicoba: ±1 dan ±2
Karena jumlah seluruh koefisien + konstantanya = 0 (1 – 2 – 1 + 2 = 0), maka, pasti x = 1 adalah salah satu faktornya, jadi:
Jadi x3 – 2x2 – x + 2 = (x – 1)(x2 – x – 2)
= (x – 1)(x – 2)(x + 1)
x = 1   x = 2   x = –1
Jadi himpunan penyelesaiannya: {–1, 1, 2}

Sifat Akar-akar Suku Banyak
Pada persamaan berderajat 3:
ax3 + bx2 + cx + d = 0 akan mempunyai akar-akar x1, x2, x3
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x2.x3 = c/a
  • Hasil kali 3 akar: x1.x2.x3 = – d/a
Pada persamaan berderajat 4:
ax4 + bx3 + cx2 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 + x4 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 = c/a
  • Jumlah 3 akar: x1.x2.x3 + x1.x2.x4 + x2.x3.x4 = – d/a
  • Hasil kali 4 akar: x1.x2.x3.x4 = e/a
Dari kedua persamaan tersebut, kita dapat menurunkan rumus yang sama untuk persamaan berderajat 5 dan seterusnya
(amati pola:  –b/a, c/a, –d/a , e/a, …)
Pembagian Istimewa
Informasi tentang materi suku banyak diatas semoga dapat bermanfaat dalam ajang membantu sobat semua untuk lebih memahami setiap pelajaran matematika sehingga dapat sukses dalam ujian nanti. Materi sebelumnya telah saya berikan mengenai metode menghitung volume benda putar.


Previous
Next Post »